Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2313568121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648470

RESUMO

United States (US) Special Operations Forces (SOF) are frequently exposed to explosive blasts in training and combat, but the effects of repeated blast exposure (RBE) on SOF brain health are incompletely understood. Furthermore, there is no diagnostic test to detect brain injury from RBE. As a result, SOF personnel may experience cognitive, physical, and psychological symptoms for which the cause is never identified, and they may return to training or combat during a period of brain vulnerability. In 30 active-duty US SOF, we assessed the relationship between cumulative blast exposure and cognitive performance, psychological health, physical symptoms, blood proteomics, and neuroimaging measures (Connectome structural and diffusion MRI, 7 Tesla functional MRI, [11C]PBR28 translocator protein [TSPO] positron emission tomography [PET]-MRI, and [18F]MK6240 tau PET-MRI), adjusting for age, combat exposure, and blunt head trauma. Higher blast exposure was associated with increased cortical thickness in the left rostral anterior cingulate cortex (rACC), a finding that remained significant after multiple comparison correction. In uncorrected analyses, higher blast exposure was associated with worse health-related quality of life, decreased functional connectivity in the executive control network, decreased TSPO signal in the right rACC, and increased cortical thickness in the right rACC, right insula, and right medial orbitofrontal cortex-nodes of the executive control, salience, and default mode networks. These observations suggest that the rACC may be susceptible to blast overpressure and that a multimodal, network-based diagnostic approach has the potential to detect brain injury associated with RBE in active-duty SOF.

2.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405829

RESUMO

Macrovascular biases have been a long-standing challenge for fMRI, limiting its ability to detect spatially specific neural activity. Recent experimental studies, including our own (Huck et al., 2023; Zhong et al., 2023), found substantial resting-state macrovascular BOLD fMRI contributions from large veins and arteries, extending into the perivascular tissue at 3 T and 7 T. The objective of this study is to demonstrate the feasibility of predicting, using a biophysical model, the experimental resting-state BOLD fluctuation amplitude (RSFA) and associated functional connectivity (FC) values at 3 Tesla. We investigated the feasibility of both 2D and 3D infinite-cylinder models as well as macrovascular anatomical networks (mVANs) derived from angiograms. Our results demonstrate that: 1) with the availability of mVANs, it is feasible to model macrovascular BOLD FC using both the mVAN-based model and 3D infinite-cylinder models, though the former performed better; 2) biophysical modelling can accurately predict the BOLD pairwise correlation near to large veins (with R 2 ranging from 0.53 to 0.93 across different subjects), but not near to large arteries; 3) compared with FC, biophysical modelling provided less accurate predictions for RSFA; 4) modelling of perivascular BOLD connectivity was feasible at close distances from veins (with R 2 ranging from 0.08 to 0.57), but not arteries, with performance deteriorating with increasing distance. While our current study demonstrates the feasibility of simulating macrovascular BOLD in the resting state, our methodology may also apply to understanding task-based BOLD. Furthermore, these results suggest the possibility of correcting for macrovascular bias in resting-state fMRI and other types of fMRI using biophysical modelling based on vascular anatomy.

3.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328081

RESUMO

Purpose: To develop EPTI, a multi-shot distortion-free multi-echo imaging technique, into a single-shot acquisition to achieve improved robustness to motion and physiological noise, increased temporal resolution, and high SNR efficiency for dynamic imaging applications. Methods: A new spatiotemporal encoding was developed to achieve single-shot EPTI by enhancing spatiotemporal correlation in k-t space. The proposed single-shot encoding improves reconstruction conditioning and sampling efficiency, with additional optimization under various accelerations to achieve optimized performance. To achieve high SNR efficiency, continuous readout with minimized deadtime was employed that begins immediately after excitation and extends for an SNR-optimized length. Moreover, k-t partial Fourier and simultaneous multi-slice acquisition were integrated to further accelerate the acquisition and achieve high spatial and temporal resolution. Results: We demonstrated that ss-EPTI achieves higher tSNR efficiency than multi-shot EPTI, and provides distortion-free imaging with densely-sampled multi-echo images at resolutions ~1.25-3 mm at 3T and 7T-with high SNR efficiency and with comparable temporal resolutions to ss-EPI. The ability of ss-EPTI to eliminate dynamic distortions common in EPI also further improves temporal stability. For fMRI, ss-EPTI also provides early-TE images (e.g., 2.9ms) to recover signal-intensity and functional-sensitivity dropout in challenging regions. The multi-echo images provide TE-dependent information about functional fluctuations, successfully distinguishing noise-components from BOLD signals and further improving tSNR. For diffusion MRI, ss-EPTI provides high-quality distortion-free diffusion images and multi-echo diffusion metrics. Conclusion: ss-EPTI provides distortion-free imaging with high image quality, rich multi-echo information, and enhanced efficiency within comparable temporal resolution to ss-EPI, offering a robust and efficient acquisition for dynamic imaging.

4.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352481

RESUMO

Purpose: To overcome the major challenges in dMRI acquisition, including low SNR, distortion/blurring, and motion vulnerability. Methods: A novel Romer-EPTI technique is developed to provide distortion-free dMRI with significant SNR gain, high motion-robustness, sharp spatial resolution, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free EPTI encoding. Romer enhances SNR by a simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness through a motion-aware super-resolution reconstruction, which also incorporates slice-profile and real-value diffusion, to resolve high-isotropic-resolution volumes. The in-plane encoding is performed using distortion/blurring-free EPTI, which further improves effective spatial resolution and motion robustness by preventing not only T2/T2*-blurring but also additional blurring resulting from combining encoded volumes with inconsistent geometries caused by dynamic distortions. Self-navigation was incorporated to enable efficient phase correction. Additional developments include strategies to address slab-boundary artifacts, achieve minimal TE for SNR gain at 7T, and achieve high robustness to strong phase variations at high b-values. Results: Using Romer-EPTI, we demonstrate distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-µm-iso) and 7T (485-µm-iso) for the first time, with high SNR efficiency (e.g., 25×), and high image quality free from distortion and slab-boundary artifacts with minimal blurring. Motion experiments demonstrate Romer-EPTI's high motion-robustness and ability to recover sharp images in the presence of motion. Romer-EPTI also demonstrates significant SNR gain and robustness in high b-value (b=5000s/mm2) and time-dependent dMRI. Conclusion: Romer-EPTI significantly improves SNR, motion-robustness, and image quality, providing a highly efficient acquisition for high-resolution dMRI and microstructure imaging.

5.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352610

RESUMO

The ability to detect fast responses with functional MRI depends on the speed of hemodynamic responses to neural activity, because hemodynamic responses act as a temporal low-pass filter smoothing out rapid changes. However, hemodynamic responses (their shape and timing) are highly variable across the brain and across stimuli. This heterogeneity of responses implies that the temporal specificity of fMRI signals, or the ability of fMRI to preserve fast information, should also vary substantially across the cortex. In this work we investigated how local differences in hemodynamic response timing impact the temporal specificity of fMRI. We conducted our research using ultra-high field (7T) fMRI at high spatiotemporal resolution, using the primary visual cortex (V1) as a model area for investigation. We used visual stimuli oscillating at slow and fast frequencies to probe the temporal specificity of individual voxels. As expected, we identified substantial variability in temporal specificity, with some voxels preserving their responses to fast neural activity more effectively than others. We investigated which voxels had the highest temporal specificity and related those to anatomical and vascular features of V1. We found that low temporal specificity is only weakly explained by the presence of large veins or cerebral cortical depth. Notably, however, temporal specificity depended strongly on a voxel's position along the anterior-posterior anatomical axis of V1, with voxels within the calcarine sulcus being capable of preserving close to 25% of their amplitude as the frequency of stimulation increased from 0.05-Hz to 0.20-Hz, and voxels nearest to the occipital pole preserving less than 18%. These results indicate that detection biases in high-resolution fMRI will depend on the anatomical and vascular features of the area being imaged, and that these biases will differ depending on the timing of the underlying neuronal activity. Importantly, this spatial heterogeneity of temporal specificity suggests that it could be exploited to achieve higher specificity in some locations, and that tailored data analysis strategies may help improve the detection and interpretation of fast fMRI responses.

6.
Nat Methods ; 20(12): 2048-2057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012321

RESUMO

To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Cabeça , Neuroimagem , Razão Sinal-Ruído
7.
Cereb Cortex ; 33(24): 11517-11525, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-37851854

RESUMO

Speech and language processing involve complex interactions between cortical areas necessary for articulatory movements and auditory perception and a range of areas through which these are connected and interact. Despite their fundamental importance, the precise mechanisms underlying these processes are not fully elucidated. We measured BOLD signals from normal hearing participants using high-field 7 Tesla fMRI with 1-mm isotropic voxel resolution. The subjects performed 2 speech perception tasks (discrimination and classification) and a speech production task during the scan. By employing univariate and multivariate pattern analyses, we identified the neural signatures associated with speech production and perception. The left precentral, premotor, and inferior frontal cortex regions showed significant activations that correlated with phoneme category variability during perceptual discrimination tasks. In addition, the perceived sound categories could be decoded from signals in a region of interest defined based on activation related to production task. The results support the hypothesis that articulatory motor networks in the left hemisphere, typically associated with speech production, may also play a critical role in the perceptual categorization of syllables. The study provides valuable insights into the intricate neural mechanisms that underlie speech processing.


Assuntos
Percepção da Fala , Fala , Humanos , Fala/fisiologia , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Percepção Auditiva/fisiologia , Percepção da Fala/fisiologia
8.
J Spec Oper Med ; 23(4): 47-56, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37851859

RESUMO

United States Special Operations Forces (SOF) personnel are frequently exposed to explosive blasts in training and combat. However, the effects of repeated blast exposure on the human brain are incompletely understood. Moreover, there is currently no diagnostic test to detect repeated blast brain injury (rBBI). In this "Human Performance Optimization" article, we discuss how the development and implementation of a reliable diagnostic test for rBBI has the potential to promote SOF brain health, combat readiness, and quality of life.


Assuntos
Traumatismos por Explosões , Militares , Humanos , Estados Unidos , Qualidade de Vida , Encéfalo/diagnóstico por imagem , Traumatismos por Explosões/diagnóstico , Traumatismos por Explosões/terapia , Explosões
9.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461673

RESUMO

BACKGROUND: The association between brain regions involved in speech production and those that play a role in speech perception is not yet fully understood. We compared speech production related brain activity with activations resulting from perceptual categorization of syllables using high field 7 Tesla functional magnetic resonance imaging (fMRI) at 1-mm isotropic voxel resolution, enabling high localization accuracy compared to previous studies. METHODS: Blood oxygenation level dependent (BOLD) signals were obtained in 20 normal hearing subjects using a simultaneous multi-slice (SMS) 7T echo-planar imaging (EPI) acquisition with whole-head coverage and 1 mm isotropic resolution. In a speech production localizer task, subjects were asked to produce a silent lip-round vowel /u/ in response to the visual cue "U" or purse their lips when they saw the cue "P". In a phoneme discrimination task, subjects were presented with pairs of syllables, which were equiprobably identical or different along an 8-step continuum between the prototypic /ba/ and /da/ sounds. After the presentation of each stimulus pair, the subjects were asked to indicate whether the two syllables they heard were identical or different by pressing one of two buttons. In a phoneme classification task, the subjects heard only one syllable and asked to indicate whether it was /ba/ or /da/. RESULTS: Univariate fMRI analyses using a parametric modulation approach suggested that left motor, premotor, and frontal cortex BOLD activations correlate with phoneme category variability in the /ba/-/da/ discrimination task. In contrast, the variability related to acoustic features of the phonemes were the highest in the right primary auditory cortex. Our multivariate pattern analysis (MVPA) suggested that left precentral/inferior frontal cortex areas, which were associated with speech production according to the localizer task, play a role also in perceptual categorization of the syllables. CONCLUSIONS: The results support the hypothesis that articulatory motor networks in the left hemisphere that are activated during speech production could also have a role in perceptual categorization of syllables. Importantly, high voxel-resolution combined with advanced coil technology allowed us to pinpoint the exact brain regions involved in both perception and production tasks.

10.
Front Neurosci ; 17: 1141007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077322

RESUMO

Background: Cerebral Amyloid Angiopathy (CAA) is a cerebral small vessel disease that can lead to microstructural disruption of white matter (WM), which can be measured by the Peak Width of Skeletonized Mean Diffusivity (PSMD). We hypothesized that PSMD measures would be increased in patients with CAA compared to healthy controls (HC), and increased PSMD is associated with lower cognitive scores in patients with CAA. Methods: Eighty-one probable CAA patients without cognitive impairment who were diagnosed with Boston criteria and 23 HCs were included. All subjects underwent an advanced brain MRI with high-resolution diffusion-weighted imaging (DWI). PSMD scores were quantified from a probabilistic skeleton of the WM tracts in the mean diffusivity (MD) image using a combination of fractional anisotropy (FA) and the FSL Tract-Based Spatial Statistics (TBSS) algorithm (www.psmd-marker.com). Within CAA cohort, standardized z-scores of processing speed, executive functioning and memory were obtained. Results: The mean of age and sex were similar between CAA patients (69.6 ± 7.3, 59.3% male) and HCs (70.6 ± 8.5, 56.5% male) (p = 0.581 and p = 0.814). PSMD was higher in the CAA group [(4.13 ± 0.94) × 10-4 mm2/s] compared to HCs [(3.28 ± 0.51) × 10-4 mm2/s] (p < 0.001). In a linear regression model corrected for relevant variables, diagnosis of CAA was independently associated with increased PSMD compared to HCs (ß = 0.45, 95% CI 0.13-0.76, p = 0.006). Within CAA cohort, higher PSMD was associated with lower scores in processing speed (p < 0.001), executive functioning (p = 0.004), and memory (0.047). Finally, PSMD outperformed all other MRI markers of CAA by explaining most of the variance in models predicting lower scores in each cognitive domain. Discussion: Peak Width of Skeletonized Mean Diffusivity is increased in CAA, and it is associated with worse cognitive scores supporting the view that disruption of white matter has a significant role in cognitive impairment in CAA. As a robust marker, PSMD can be used in clinical trials or practice.

11.
Elife ; 122023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36888685

RESUMO

The characterization of cortical myelination is essential for the study of structure-function relationships in the human brain. However, knowledge about cortical myelination is largely based on post-mortem histology, which generally renders direct comparison to function impossible. The repeating pattern of pale-thin-pale-thick stripes of cytochrome oxidase (CO) activity in the primate secondary visual cortex (V2) is a prominent columnar system, in which histology also indicates different myelination of thin/thick versus pale stripes. We used quantitative magnetic resonance imaging (qMRI) in conjunction with functional magnetic resonance imaging (fMRI) at ultra-high field strength (7 T) to localize and study myelination of stripes in four human participants at sub-millimeter resolution in vivo. Thin and thick stripes were functionally localized by exploiting their sensitivity to color and binocular disparity, respectively. Resulting functional activation maps showed robust stripe patterns in V2 which enabled further comparison of quantitative relaxation parameters between stripe types. Thereby, we found lower longitudinal relaxation rates (R1) of thin and thick stripes compared to surrounding gray matter in the order of 1-2%, indicating higher myelination of pale stripes. No consistent differences were found for effective transverse relaxation rates (R2*). The study demonstrates the feasibility to investigate structure-function relationships in living humans within one cortical area at the level of columnar systems using qMRI.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Córtex Visual , Animais , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mapeamento Encefálico , Córtex Visual/fisiologia , Disparidade Visual , Imageamento por Ressonância Magnética
12.
Med Image Anal ; 86: 102744, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36867912

RESUMO

Diffusion MRI is a useful neuroimaging tool for non-invasive mapping of human brain microstructure and structural connections. The analysis of diffusion MRI data often requires brain segmentation, including volumetric segmentation and cerebral cortical surfaces, from additional high-resolution T1-weighted (T1w) anatomical MRI data, which may be unacquired, corrupted by subject motion or hardware failure, or cannot be accurately co-registered to the diffusion data that are not corrected for susceptibility-induced geometric distortion. To address these challenges, this study proposes to synthesize high-quality T1w anatomical images directly from diffusion data using convolutional neural networks (CNNs) (entitled "DeepAnat"), including a U-Net and a hybrid generative adversarial network (GAN), and perform brain segmentation on synthesized T1w images or assist the co-registration using synthesized T1w images. The quantitative and systematic evaluations using data of 60 young subjects provided by the Human Connectome Project (HCP) show that the synthesized T1w images and results for brain segmentation and comprehensive diffusion analysis tasks are highly similar to those from native T1w data. The brain segmentation accuracy is slightly higher for the U-Net than the GAN. The efficacy of DeepAnat is further validated on a larger dataset of 300 more elderly subjects provided by the UK Biobank. Moreover, the U-Nets trained and validated on the HCP and UK Biobank data are shown to be highly generalizable to the diffusion data from Massachusetts General Hospital Connectome Diffusion Microstructure Dataset (MGH CDMD) acquired with different hardware systems and imaging protocols and therefore can be used directly without retraining or with fine-tuning for further improved performance. Finally, it is quantitatively demonstrated that the alignment between native T1w images and diffusion images uncorrected for geometric distortion assisted by synthesized T1w images substantially improves upon that by directly co-registering the diffusion and T1w images using the data of 20 subjects from MGH CDMD. In summary, our study demonstrates the benefits and practical feasibility of DeepAnat for assisting various diffusion MRI data analyses and supports its use in neuroscientific applications.


Assuntos
Aprendizado Profundo , Humanos , Idoso , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Análise de Dados
13.
Magn Reson Med ; 89(6): 2227-2241, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36708203

RESUMO

PURPOSE: To achieve high-resolution multishot echo-planar imaging (EPI) for functional MRI (fMRI) with reduced sensitivity to in-plane motion and between-shot phase variations. METHODS: Two-dimensional radiofrequency pulses were incorporated in a multishot EPI sequence at 7T which selectively excited a set of in-plane bands (shutters) in the phase encoding direction, which moved between shots to cover the entire slice. A phase- and motion-corrected reconstruction was implemented for the acquisition. Brain imaging experiments were performed with instructed motion to evaluate image quality for conventional multishot and shuttered EPI. Temporal stability was assessed in three subjects by quantifying temporal SNR (tSNR) and artifact levels, and fMRI activation experiments using visual stimulation were performed to assess the strength and distribution of activation, using both conventional multishot and shuttered EPI. RESULTS: In the instructed motion experiment, ghosting was lower in shuttered EPI images without or with corrections and image quality metrics were improved with motion correction. tSNR was improved by phase correction in both conventional multishot and shuttered EPI and the acquisitions had similar tSNR without and with phase correction. However, while phase correction was necessary to maximize tSNR in conventional multishot EPI, it also increased intermittent ghosting, but did not increase intermittent ghosting in shuttered EPI. Phase correction increased activation strength in both conventional multishot and shuttered EPI, but caused increased spurious activation outside the brain and in frontal brain regions in conventional multishot EPI. CONCLUSION: Shuttered EPI supports multishot segmented EPI acquisitions with lower sensitivity to artifacts from motion for high-resolution fMRI.


Assuntos
Algoritmos , Imagem Ecoplanar , Humanos , Imagem Ecoplanar/métodos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Movimento (Física) , Artefatos , Processamento de Imagem Assistida por Computador/métodos
14.
Hum Brain Mapp ; 44(2): 362-372, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35980015

RESUMO

Invasive neurophysiological studies in nonhuman primates have shown different laminar activation profiles to auditory vs. visual stimuli in auditory cortices and adjacent polymodal areas. Means to examine the underlying feedforward vs. feedback type influences noninvasively have been limited in humans. Here, using 1-mm isotropic resolution 3D echo-planar imaging at 7 T, we studied the intracortical depth profiles of functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) signals to brief auditory (noise bursts) and visual (checkerboard) stimuli. BOLD percent-signal-changes were estimated at 11 equally spaced intracortical depths, within regions-of-interest encompassing auditory (Heschl's gyrus, Heschl's sulcus, planum temporale, and posterior superior temporal gyrus) and polymodal (middle and posterior superior temporal sulcus) areas. Effects of differing BOLD signal strengths for auditory and visual stimuli were controlled via normalization and statistical modeling. The BOLD depth profile shapes, modeled with quadratic regression, were significantly different for auditory vs. visual stimuli in auditory cortices, but not in polymodal areas. The different depth profiles could reflect sensory-specific feedforward versus cross-sensory feedback influences, previously shown in laminar recordings in nonhuman primates. The results suggest that intracortical BOLD profiles can help distinguish between feedforward and feedback type influences in the human brain. Further experimental studies are still needed to clarify how underlying signal strength influences BOLD depth profiles under different stimulus conditions.


Assuntos
Córtex Auditivo , Imageamento por Ressonância Magnética , Humanos , Animais , Estimulação Acústica , Imageamento por Ressonância Magnética/métodos , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Primatas
15.
NMR Biomed ; 36(5): e4873, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347826

RESUMO

T1 relaxation times of the 14 T1 phantom spheres that make up the standard International Society for Magnetic Resonance in Medicine (ISMRM)/National Institute of Standards and Technology (NIST) system phantom are reported at 7 T. T1 values of six of the 14 T1 spheres at 7 T (with T1 > 270 ms) have been reported previously, but, to the best of our knowledge, not all of the T1s of the 14 T1 spheres at 7 T have been reported before. Given the increasing number of 7-T MRI systems in clinical settings and the increasing need for T1 phantoms that cover a wide range of T1 relaxation times to evaluate rapid T1 mapping techniques at 7 T, it is of high interest to obtain accurate T1 values for all the ISMRM/NIST T1 spheres at 7 T. In this work, T1 relaxation time was measured on a 7-T MRI scanner using an inversion-recovery spin-echo pulse sequence and derived by curve fitting to a signal equation that exhibits insensitivity to B 1 + inhomogeneity. Day-to-day reproducibility was within 0.4% and differences between two different RF coils within 1.5%. T1s of a subset of the 14 spheres were also measured by NMR at 7 T for comparison, and the T1 results were consistent between the MRI and NMR measurements. T1 measurements performed at 3 T on the same 14 spheres using the same sequence and fitting method yielded good agreement (mean percentage difference of -0.4%) with the reference T1 values available from the NIST, reflecting the accuracy of the reported technique despite being without the standard phantom housing. We found that the T1 values of all 14 NiCl2 spheres are consistently lower at 7 T than at 3 T. Although our results were well reproduced, this study represents initial work to quantify the 7-T T1 values of all 14 NIST T1 spheres outside of the standard housing and does not warrant reproducibility of the ISMRM/NIST system phantom as a whole. A future study to assess the T1 values of a version of the ISMRM/NIST system phantom that fits inside typical commercial coils at 7 T will be very helpful. Nonetheless, the details on our acquisition and curve-fitting methods reported here allow the T1 measurements to be reproduced elsewhere. The T1 values of all 14 spheres reported here will be valuable for the development of quantitative MR fingerprinting and rapid T1 mapping for a large variety of research projects, not only in neuroimaging but also in body MRI, musculoskeletal MRI, and gadolinium contrast-enhanced MRI, each of which is concerned with much shortened T1.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Valores de Referência
16.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187540

RESUMO

In graph theory, "multilayer networks" represent systems involving several interconnected topological levels. A neuroscience example is the hierarchy of connections between different cortical depths or "lamina". This hierarchy is becoming non-invasively accessible in humans using ultra-high-resolution functional MRI (fMRI). Here, we applied multilayer graph theory to examine functional connectivity across different cortical depths in humans, using 7T fMRI (1-mm3 voxels; 30 participants). Blood oxygenation level dependent (BOLD) signals were derived from five depths between the white matter and pial surface. We then compared networks where the inter-regional connections were limited to a single cortical depth only ("layer-by-layer matrices") to those considering all possible connections between regions and cortical depths ("multilayer matrix"). We utilized global and local graph theory features that quantitatively characterize network attributes such as network composition, nodal centrality, path-based measures, and hub segregation. Detecting functional differences between cortical depths was improved using multilayer connectomics compared to the layer-by-layer versions. Superficial aspects of the cortex dominated information transfer and deeper aspects clustering. These differences were largest in frontotemporal and limbic brain regions. fMRI functional connectivity across different cortical depths may contain neurophysiologically relevant information. Multilayer connectomics could provide a methodological framework for studies on how information flows across this hierarchy.

17.
Neuroimage ; 264: 119701, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283542

RESUMO

Accurate spatial alignment of MRI data acquired across multiple contrasts in the same subject is often crucial for data analysis and interpretation, but can be challenging in the presence of geometric distortions that differ between acquisitions. It is well known that single-shot echo-planar imaging (EPI) acquisitions suffer from distortion in the phase-encoding direction due to B0 field inhomogeneities arising from tissue magnetic susceptibility differences and other sources, however there can be distortion in other encoding directions as well in the presence of strong field inhomogeneities. High-resolution ultrahigh-field MRI typically uses low bandwidth in the slice-encoding direction to acquire thin slices and, when combined with the pronounced B0 inhomogeneities, is prone to an additional geometric distortion in the slice direction as well. Here we demonstrate the presence of this slice distortion in high-resolution 7T EPI acquired with a novel pulse sequence allowing for the reversal of the slice-encoding gradient polarity that enables the acquisition of pairs of images with equal magnitudes of distortion in the slice direction but with opposing polarities. We also show that the slice-direction distortion can be corrected using gradient reversal-based method applying the same software used for conventional corrections of phase-encoding direction distortion.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Humanos , Imagem Ecoplanar/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Algoritmos , Encéfalo/diagnóstico por imagem
18.
Magn Reson Med ; 88(6): 2548-2563, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36093989

RESUMO

PURPOSE: To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality. METHODS: FIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field. RESULTS: Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. CONCLUSION: FIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improves T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Calibragem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
19.
Nat Commun ; 13(1): 5442, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114170

RESUMO

Awakening from sleep reflects a profound transformation in neural activity and behavior. The thalamus is a key controller of arousal state, but whether its diverse nuclei exhibit coordinated or distinct activity at transitions in behavioral arousal state is unknown. Using fast fMRI at ultra-high field (7 Tesla), we measured sub-second activity across thalamocortical networks and within nine thalamic nuclei to delineate these dynamics during spontaneous transitions in behavioral arousal state. We discovered a stereotyped sequence of activity across thalamic nuclei and cingulate cortex that preceded behavioral arousal after a period of inactivity, followed by widespread deactivation. These thalamic dynamics were linked to whether participants subsequently fell back into unresponsiveness, with unified thalamic activation reflecting maintenance of behavior. These results provide an outline of the complex interactions across thalamocortical circuits that orchestrate behavioral arousal state transitions, and additionally, demonstrate that fast fMRI can resolve sub-second subcortical dynamics in the human brain.


Assuntos
Nível de Alerta , Tálamo , Nível de Alerta/fisiologia , Encéfalo/diagnóstico por imagem , Humanos , Sono , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/fisiologia , Tálamo/diagnóstico por imagem , Tálamo/fisiologia
20.
J Cereb Blood Flow Metab ; 42(10): 1933-1943, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35673981

RESUMO

White matter lesions (WML) have been linked to cognitive decline in aging as well as in Alzheimer's disease. While hypoperfusion is frequently considered a cause of WMLs due to the resulting reduction in oxygen availability to brain tissue, such reductions could also be caused by impaired oxygen exchange. Here, we tested the hypothesis that venous hyperintense signal (VHS) in arterial spin labeling (ASL) magnetic resonance imaging (MRI) may represent a marker of impaired oxygen extraction in aging older adults. In participants aged 60-80 years (n = 30), we measured cerebral blood flow and VHS with arterial spin labeling, maximum oxygen extraction fraction (OEFmax) with dynamic susceptibility contrast, and WML volume with T1-weighted MRI. We found a significant interaction between OEFmax and VHS presence on WML volume (p = 0.02), where lower OEFmax was associated with higher WML volume in participants with VHS, and higher OEFmax was associated with higher WML volume in participants without VHS. These results indicate that VHS in perfusion-weighted ASL data may represent a distinct cerebrovascular aging pattern involving oxygen extraction inefficiency as well as hypoperfusion.


Assuntos
Substância Branca , Idoso , Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Humanos , Imageamento por Ressonância Magnética , Oxigênio/metabolismo , Marcadores de Spin , Substância Branca/irrigação sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...